\(\int \cot (d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx\) [8]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 602 \[ \int \cot (d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx=-\frac {\sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \arctan \left (\frac {b^2+(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )-b \sqrt {a^2+b^2-2 a c+c^2} \cot (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}-\frac {b \text {arctanh}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{2 \sqrt {c} e}+\frac {\sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \text {arctanh}\left (\frac {b^2+(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )+b \sqrt {a^2+b^2-2 a c+c^2} \cot (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}-\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{e} \]

[Out]

-1/2*b*arctanh(1/2*(b+2*c*cot(e*x+d))/c^(1/2)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2))/e/c^(1/2)-(a+b*cot(e*x+d)
+c*cot(e*x+d)^2)^(1/2)/e+1/2*arctanh(1/2*(b^2+b*cot(e*x+d)*(a^2-2*a*c+b^2+c^2)^(1/2)+(a-c)*(a-c+(a^2-2*a*c+b^2
+c^2)^(1/2)))/(a^2-2*a*c+b^2+c^2)^(1/4)*2^(1/2)/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2)/(a^2+b^2+c*(c-(a^2-2*a*c
+b^2+c^2)^(1/2))-a*(2*c-(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/2))*(a^2+b^2+c*(c-(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c-(a^
2-2*a*c+b^2+c^2)^(1/2)))^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/4)/e*2^(1/2)-1/2*arctan(1/2*(b^2+(a-c)*(a-c-(a^2-2*a*c+b
^2+c^2)^(1/2))-b*cot(e*x+d)*(a^2-2*a*c+b^2+c^2)^(1/2))/(a^2-2*a*c+b^2+c^2)^(1/4)*2^(1/2)/(a+b*cot(e*x+d)+c*cot
(e*x+d)^2)^(1/2)/(a^2+b^2+c*(c+(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c+(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/2))*(a^2+b^2+c
*(c+(a^2-2*a*c+b^2+c^2)^(1/2))-a*(2*c+(a^2-2*a*c+b^2+c^2)^(1/2)))^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/4)/e*2^(1/2)

Rubi [A] (verified)

Time = 23.71 (sec) , antiderivative size = 602, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.290, Rules used = {3782, 1035, 1092, 635, 212, 1050, 1044, 214, 211} \[ \int \cot (d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx=-\frac {\sqrt {-a \left (\sqrt {a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt {a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \arctan \left (\frac {-b \sqrt {a^2-2 a c+b^2+c^2} \cot (d+e x)+(a-c) \left (-\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (\sqrt {a^2-2 a c+b^2+c^2}+2 c\right )+c \left (\sqrt {a^2-2 a c+b^2+c^2}+c\right )+a^2+b^2} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} e \sqrt [4]{a^2-2 a c+b^2+c^2}}+\frac {\sqrt {-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \text {arctanh}\left (\frac {b \sqrt {a^2-2 a c+b^2+c^2} \cot (d+e x)+(a-c) \left (\sqrt {a^2-2 a c+b^2+c^2}+a-c\right )+b^2}{\sqrt {2} \sqrt [4]{a^2-2 a c+b^2+c^2} \sqrt {-a \left (2 c-\sqrt {a^2-2 a c+b^2+c^2}\right )+c \left (c-\sqrt {a^2-2 a c+b^2+c^2}\right )+a^2+b^2} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} e \sqrt [4]{a^2-2 a c+b^2+c^2}}-\frac {b \text {arctanh}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{2 \sqrt {c} e}-\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{e} \]

[In]

Int[Cot[d + e*x]*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2],x]

[Out]

-((Sqrt[a^2 + b^2 + c*(c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c + Sqrt[a^2 + b^2 - 2*a*c + c^2])]*ArcTan[(b
^2 + (a - c)*(a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - b*Sqrt[a^2 + b^2 - 2*a*c + c^2]*Cot[d + e*x])/(Sqrt[2]*
(a^2 + b^2 - 2*a*c + c^2)^(1/4)*Sqrt[a^2 + b^2 + c*(c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c + Sqrt[a^2 + b
^2 - 2*a*c + c^2])]*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2])])/(Sqrt[2]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*e)
) - (b*ArcTanh[(b + 2*c*Cot[d + e*x])/(2*Sqrt[c]*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2])])/(2*Sqrt[c]*e)
+ (Sqrt[a^2 + b^2 + c*(c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c - Sqrt[a^2 + b^2 - 2*a*c + c^2])]*ArcTanh[(
b^2 + (a - c)*(a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2]) + b*Sqrt[a^2 + b^2 - 2*a*c + c^2]*Cot[d + e*x])/(Sqrt[2]
*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*Sqrt[a^2 + b^2 + c*(c - Sqrt[a^2 + b^2 - 2*a*c + c^2]) - a*(2*c - Sqrt[a^2 +
b^2 - 2*a*c + c^2])]*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2])])/(Sqrt[2]*(a^2 + b^2 - 2*a*c + c^2)^(1/4)*e
) - Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2]/e

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1035

Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[h*(a + b*x + c*x^2)^p*((d + f*x^2)^(q + 1)/(2*f*(p + q + 1))), x] - Dist[1/(2*f*(p + q + 1)), Int[(a + b*x +
c*x^2)^(p - 1)*(d + f*x^2)^q*Simp[h*p*(b*d) + a*(-2*g*f)*(p + q + 1) + (2*h*p*(c*d - a*f) + b*(-2*g*f)*(p + q
+ 1))*x + (h*p*((-b)*f) + c*(-2*g*f)*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, g, h, q}, x] && NeQ
[b^2 - 4*a*c, 0] && GtQ[p, 0] && NeQ[p + q + 1, 0]

Rule 1044

Int[((g_) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[-2*
a*g*h, Subst[Int[1/Simp[2*a^2*g*h*c + a*e*x^2, x], x], x, Simp[a*h - g*c*x, x]/Sqrt[d + e*x + f*x^2]], x] /; F
reeQ[{a, c, d, e, f, g, h}, x] && EqQ[a*h^2*e + 2*g*h*(c*d - a*f) - g^2*c*e, 0]

Rule 1050

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[(c*d - a*f)^2 + a*c*e^2, 2]}, Dist[1/(2*q), Int[Simp[(-a)*h*e - g*(c*d - a*f - q) + (h*(c*d - a*f + q) -
 g*c*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] - Dist[1/(2*q), Int[Simp[(-a)*h*e - g*(c*d - a*f + q
) + (h*(c*d - a*f - q) - g*c*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g,
 h}, x] && NeQ[e^2 - 4*d*f, 0] && NegQ[(-a)*c]

Rule 1092

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Sym
bol] :> Dist[C/c, Int[1/Sqrt[d + e*x + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + B*c*x)/((a + c*x^2)*Sqrt[d
+ e*x + f*x^2]), x], x] /; FreeQ[{a, c, d, e, f, A, B, C}, x] && NeQ[e^2 - 4*d*f, 0]

Rule 3782

Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n_.) + (c_.)*(cot[(d_.) + (e
_.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] :> Dist[-f/e, Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2
)), x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\text {Subst}\left (\int \frac {x \sqrt {a+b x+c x^2}}{1+x^2} \, dx,x,\cot (d+e x)\right )}{e} \\ & = -\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{e}+\frac {\text {Subst}\left (\int \frac {\frac {b}{2}-(a-c) x-\frac {b x^2}{2}}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{e} \\ & = -\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{e}+\frac {\text {Subst}\left (\int \frac {b+(-a+c) x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{e}-\frac {b \text {Subst}\left (\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{2 e} \\ & = -\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{e}-\frac {b \text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c \cot (d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{e}-\frac {\text {Subst}\left (\int \frac {-b \sqrt {a^2+b^2-2 a c+c^2}+\left (-b^2-(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right ) x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{2 \sqrt {a^2+b^2-2 a c+c^2} e}+\frac {\text {Subst}\left (\int \frac {b \sqrt {a^2+b^2-2 a c+c^2}+\left (-b^2-(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right ) x}{\left (1+x^2\right ) \sqrt {a+b x+c x^2}} \, dx,x,\cot (d+e x)\right )}{2 \sqrt {a^2+b^2-2 a c+c^2} e} \\ & = -\frac {b \text {arctanh}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{2 \sqrt {c} e}-\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{e}+\frac {\left (b \left (b^2+(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right )\right ) \text {Subst}\left (\int \frac {1}{2 b \sqrt {a^2+b^2-2 a c+c^2} \left (b^2+(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )\right )+b x^2} \, dx,x,\frac {-b^2-(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )+b \sqrt {a^2+b^2-2 a c+c^2} \cot (d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{e}+\frac {\left (b \left (b^2+(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right )\right ) \text {Subst}\left (\int \frac {1}{-2 b \sqrt {a^2+b^2-2 a c+c^2} \left (b^2+(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )\right )+b x^2} \, dx,x,\frac {-b^2-(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )-b \sqrt {a^2+b^2-2 a c+c^2} \cot (d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{e} \\ & = -\frac {\sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \arctan \left (\frac {b^2+(a-c) \left (a-c-\sqrt {a^2+b^2-2 a c+c^2}\right )-b \sqrt {a^2+b^2-2 a c+c^2} \cot (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c+\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c+\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}-\frac {b \text {arctanh}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{2 \sqrt {c} e}+\frac {\sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \text {arctanh}\left (\frac {b^2+(a-c) \left (a-c+\sqrt {a^2+b^2-2 a c+c^2}\right )+b \sqrt {a^2+b^2-2 a c+c^2} \cot (d+e x)}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} \sqrt {a^2+b^2+c \left (c-\sqrt {a^2+b^2-2 a c+c^2}\right )-a \left (2 c-\sqrt {a^2+b^2-2 a c+c^2}\right )} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \sqrt [4]{a^2+b^2-2 a c+c^2} e}-\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{e} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.43 (sec) , antiderivative size = 324, normalized size of antiderivative = 0.54 \[ \int \cot (d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx=-\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \tan (d+e x) \left (b \text {arctanh}\left (\frac {2 c+b \tan (d+e x)}{2 \sqrt {c} \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}\right )+\sqrt {c} \left (i \sqrt {a+i b-c} \arctan \left (\frac {i b-2 c+(2 i a-b) \tan (d+e x)}{2 \sqrt {a+i b-c} \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}\right )+i \sqrt {a-i b-c} \arctan \left (\frac {i b+2 c+(2 i a+b) \tan (d+e x)}{2 \sqrt {a-i b-c} \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}\right )+2 \cot (d+e x) \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}\right )\right )}{2 \sqrt {c} e \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}} \]

[In]

Integrate[Cot[d + e*x]*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2],x]

[Out]

-1/2*(Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2]*Tan[d + e*x]*(b*ArcTanh[(2*c + b*Tan[d + e*x])/(2*Sqrt[c]*Sq
rt[c + b*Tan[d + e*x] + a*Tan[d + e*x]^2])] + Sqrt[c]*(I*Sqrt[a + I*b - c]*ArcTan[(I*b - 2*c + ((2*I)*a - b)*T
an[d + e*x])/(2*Sqrt[a + I*b - c]*Sqrt[c + b*Tan[d + e*x] + a*Tan[d + e*x]^2])] + I*Sqrt[a - I*b - c]*ArcTan[(
I*b + 2*c + ((2*I)*a + b)*Tan[d + e*x])/(2*Sqrt[a - I*b - c]*Sqrt[c + b*Tan[d + e*x] + a*Tan[d + e*x]^2])] + 2
*Cot[d + e*x]*Sqrt[c + b*Tan[d + e*x] + a*Tan[d + e*x]^2])))/(Sqrt[c]*e*Sqrt[c + b*Tan[d + e*x] + a*Tan[d + e*
x]^2])

Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 2.44 (sec) , antiderivative size = 17767874, normalized size of antiderivative = 29514.74

\[\text {output too large to display}\]

[In]

int(cot(e*x+d)*(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x)

[Out]

result too large to display

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5650 vs. \(2 (543) = 1086\).

Time = 2.30 (sec) , antiderivative size = 11351, normalized size of antiderivative = 18.86 \[ \int \cot (d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx=\text {Too large to display} \]

[In]

integrate(cot(e*x+d)*(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x, algorithm="fricas")

[Out]

Too large to include

Sympy [F]

\[ \int \cot (d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx=\int \sqrt {a + b \cot {\left (d + e x \right )} + c \cot ^{2}{\left (d + e x \right )}} \cot {\left (d + e x \right )}\, dx \]

[In]

integrate(cot(e*x+d)*(a+b*cot(e*x+d)+c*cot(e*x+d)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*cot(d + e*x) + c*cot(d + e*x)**2)*cot(d + e*x), x)

Maxima [F]

\[ \int \cot (d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx=\int { \sqrt {c \cot \left (e x + d\right )^{2} + b \cot \left (e x + d\right ) + a} \cot \left (e x + d\right ) \,d x } \]

[In]

integrate(cot(e*x+d)*(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*cot(e*x + d)^2 + b*cot(e*x + d) + a)*cot(e*x + d), x)

Giac [F]

\[ \int \cot (d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx=\int { \sqrt {c \cot \left (e x + d\right )^{2} + b \cot \left (e x + d\right ) + a} \cot \left (e x + d\right ) \,d x } \]

[In]

integrate(cot(e*x+d)*(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*cot(e*x + d)^2 + b*cot(e*x + d) + a)*cot(e*x + d), x)

Mupad [F(-1)]

Timed out. \[ \int \cot (d+e x) \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \, dx=\int \mathrm {cot}\left (d+e\,x\right )\,\sqrt {c\,{\mathrm {cot}\left (d+e\,x\right )}^2+b\,\mathrm {cot}\left (d+e\,x\right )+a} \,d x \]

[In]

int(cot(d + e*x)*(a + b*cot(d + e*x) + c*cot(d + e*x)^2)^(1/2),x)

[Out]

int(cot(d + e*x)*(a + b*cot(d + e*x) + c*cot(d + e*x)^2)^(1/2), x)